

$_{\diamondsuit}$ $y=ax^2$ の変域

(xの変域に0を含まない場合)

(xの変域に0を含む場合)

〈例題〉 関数 $y = -2x^2$ について, x の変域が次のようなとき, y の変域を求めなさい。

(1) $1 \le x \le 3$ x の変域に0 を含まない

$$y = -2 \times 1^2 = -2$$
 最大
 $y = -2 \times 3^2 = -18$ 最小

$$-18 \leqq y \leqq -2$$

(2) $-4 < x \le -2$ x の変域に0 を含まない

$$y = -2 \times (-4)^2 = -32$$
 最小 $y = -2 \times (-2)^2 = -8$ 最大

$$-32 \le y \le -8$$

 $(3) -1 < x \leq 2$ x の変域に0 を 含む

0を通るので片方は 0 絶対値の大きい方を代入

$$y = -2 \times 2^2 = -8$$
 最小
$$-8 \le y \le 0$$

デジタル板書データ (youtube動画)

『関数y=ax²の変域』

1	関数 $y = -2x^2$ について, x の変域が次のようなとき, y の変域を求めなさい。

 $(2) -5 \le x \le 3$

(3) $-4 \le x \le -2$

2 次の問いに答えなさい。

(1) $1 \leq x \leq 2$

- (1) 関数 $y=ax^2$ について, x の変域が $-2 \le x \le 3$ のとき, y の変域が $-27 \le y \le 0$ である。 このとき, a の値を求めなさい。
- (2) 2 つの関数 $y=ax^2$ と $y=\frac{1}{3}x-1$ は x の変域が $-3\leq x\leq 3$ のとき, y の変域が等しくなる。 このとき, a の値を求めなさい。
- 3 次の問いに答えなさい。
 - (1) 次の関数について、xの変域が $-4 \le x \le 6$ のときの y の変域を求めなさい。

①
$$y = 2x^2$$
 ② $y = \frac{1}{3}x^2$ ③ $y = -\frac{1}{4}x^2$

- (2) 関数 $y=ax^2$ について, x の変域が $-3 \le x \le 4$ のとき, y の変域が $-4 \le y \le 0$ である。 このとき, a の値を求めなさい。
- (3) 2 つの関数 $y=ax^2$ と y=x+2 は x の変域が $-2 \le x \le 3$ のとき, y の変域が等しくなる。 このとき, a の値を求めなさい。