【例題】 $\textcolor{green}{x=\frac{1}{\sqrt{5}+\sqrt{3}} y=\frac{1}{\sqrt{5}-\sqrt{3}}}$ のとき、次の式の値を求めなさい。
\begin{eqnarray} \textcolor{green}{(1)}& &\textcolor{green}{x+y} → 代入して計算\\ &=&\frac{1}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{5}-\sqrt{3}}\\\\ &=&\frac{(\sqrt{5}+\sqrt{3})+(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}=\frac{2\sqrt{5}}{2}=\textcolor{red}{\sqrt{5}} \end{eqnarray}
\begin{eqnarray} \textcolor{green}{(2)}& &\textcolor{green}{xy} 代入して計算\\ &=&\frac{1}{\sqrt{5}+\sqrt{3}}×\frac{1}{\sqrt{5}-\sqrt{3}}\\\\ &=&\frac{1}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}=\textcolor{red}{\frac{1}{2}} \end{eqnarray}